Submaximal spaces and cardinal invariants
نویسندگان
چکیده
We give a combinatorial characterization of countable submaximal subspaces 2κ. Using parametrized version Mathias forcing, we prove that there exists subspace 2ω1 whilst c=ω2. Combining this with previous results, construct disjointly tight irresolvable space weight <c, answering question Bella and Hrušák.
منابع مشابه
Cardinal invariants and compactifications
We prove that every compact space X is a Čech-Stone compactification of a normal subspace of cardinality at most d(X)t(X), and some facts about cardinal invariants of compact spaces.
متن کاملIsolating Cardinal Invariants
There is an optimal way of increasing certain cardinal invariants of the
متن کاملCARDINAL INVARIANTS bκ AND tκ
This paper studies cardinal invariants bκ and tκ, the natural generalizations of the invariants b and t to a regular cardinal κ.
متن کاملPartition Calculus and Cardinal Invariants
We prove that the strong polarized relation ( θ ω )
متن کاملCardinal invariants of universals
We examine when a space X has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the σ-weight of X when X is perfectly normal. We also show that if Y parametrises a zero set universal for X then hL(X) ≤ hd(Y ) for all n ∈ N. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2022
ISSN: ['1879-3207', '0166-8641']
DOI: https://doi.org/10.1016/j.topol.2022.108123